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The use of laser radiation to heat a plasma to superhigh temperatures was suggested in 
[i]. Research in the field of laser thermonuclear synthesis (LTS) was particularly intensi- 
fied after a proposed new approach to the solution of this problem [2], the essential fea- 
ture of which is the requirement that the flux q(t) of laser radiation incident on the sur- 
face of the DT target vary in a peaking mode, i.e., q(t) § ~ monotonically at t § tf, tf 
being finite. The purpose of the present report is to bring out a number of properties which 
are common to processes in which modes with peaking appear. The authors do not pretend to 
any complete survey of reports devoted to different aspects of the LTS problem. The survey 
begins with a clarification of the question of how the law of time variation of the laser 
radiation intensity providing for close to adiabatic compression of the central part of a DT 
drop is obtained in [2-5]. Then we analyze a number of processes characteristic of the 
development of modes with peaking in a continuous medium, the significance of which, in the 
author's opinion, is far wider than their use in the LTS problem. Modes with peaking are 
connected with the properties of strongly nonsteady processes, which are characterized by 
the phenomenon of metastable localization of processes of transfer of heat, the magnetic 
field, and other quantities in certain sections of the medium. Stable temperature and other 

inhomogeneities (structures) develop in the medium as a result. 

In the present report attention is concentrated on a survey of the results of the inves- 
tigation of the properties of the thermodynamics of modes with peaking which are due to the 
appearance and development of structures in the continuous nonlinear medium. 

The problem of the compression of a half-space by a plane piston was analyzed in [6] and 
a pressure law providing for compression without shock waves was obtained: p(rp, t) ~ (tf - -  

t)-2~l (Y+,). 
A solution exists up to the time t = tf when the characteristic curves intersect at one 

point (r = 0). The radius rp of the piston measured from this point decreases in accordance 

with the law rp ~ (tf " t)2/(Y+:). 

In [2] the law q(t) for the laser flux used for almost adiabatic compression of a drop 
was chosen from the following considerations. It was assumed that the time dependence of the 
velocity in the adiabatically compressed region behind a weak shock wave front is obtained 

from v ~ 712/(y + l)](p/po) ~ ~p (~ is the adiabatic index and po is the density ahead of 
the shock wave). The time dependence of the flux of laser radiation is obtained from dimen- 
sionality relations for the case of a plane geometry: q - E ~ pv ~ p 3/2. The pressure de- 
pendence is taken from the problem of the adiabatic compression of a half-space by a plane 
piston which was solved in [6]. Then for the flux one obtains q ~ (tf -- t)-a~/(Y+1). With 
y = 5/3 we have 3y/(y + i) = 1.875. This time dependence of the flux is presented in [2]~ 
It is noted that the law q ~ (tf -- t) -2 is usually used in numerical experiments on the 

spherical compression of a drop. 

The assumption of the homogeneous compression of a finite mass of plasma was made in 
[5], i.e., it was assumed that the law r = roh(t) of the time variation of the radius of any 
element of mass is the same, where ro is the position of this radius at the initial time. 
Such an assumption of the separation of the Lagrangian (mass) and time variables made it 
possible to obtain from the momentum equation an equation determining h(t), 
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2 9 d h l d t :  = - -  h 2 - ~ .  

where t, = t/tf. In this case it was assumed that p ~ p7 ~ (Mo/ra) Y ~ h-aY, where Mo = 
const, i.e., the mass of the ball being compressed was taken as constant. The general solu- 
tion of the equation for h(t) is as follows: 

dh __ 

~ ] i / - C , _ 2 j ,  h2_3Vd h = - -  l f ,  -t-- C:~.  

The choice of the integration constants C~ and Ci determines the two types of solution of 
the problem. Taking Ci = 0 and Ci = l, which corresponds to a nonzero velocity at the 
initial time (t = 0), one can obtain 

2 2 
h l ( t )  = ( 3 7 - - t  ~3V--1 ( l - - t , ) 3 V  - I  

The other case, when the velocity of the piston equals zero and h(0) = i at the initial 
time, is analyzed in [5]. Taking CI = 2/3(1- y) and C= = 0 for this, the author finds the 
following solution for the case of y = 5/3: hi(t) = (i- t~) I/I. .We note that hi = r -- 
t,) ~/i when y = 5/3. As t -s tf we have hi = (i + t~)~/i(l -- t~)I/i § ~(i -- t~) I/I, i.e., 
h2 § hl. In [5], similarly to [2], it was assumed that v ~ p, and then the following law 
for the total laser flux was obtained in [5] with allowance for sphericity: 

q ~ r2pv ~ r2p 3/2 ,~  h~ ill2 ~ (t~ - -  t2) -''1~. 

Finally, in [3, 4], also on the assumption of constancy of the mass being compressed 
and using dimensionality relations analogous to the preceding ones (solutions of the type 
of hl were used), the laws 

r N ( t - - t , ) 2 1 ( 3 ~ - t ) ,  p . . ~ p ~ N r - 3 ~ . . ~ ( l - - t , ) - ~ l ( 3 v - - l ~  

and the time dependence of the total laser radiation flux 

q ~ r2pv ..~ r2pdr /d t  N ( t  - -  t , ) (7-gv>/(3~-t)  

were obtained with y = 5/3 and q - (tf -- t) -i. In these reports, in contrast to [2, 5], it 
was assumed that the law of time variation of the velocity must be taken from v = dr/dt. 

The problem of adiabatic compression of a plasma (compression without the formation of 
shock waves in it) has been strictly solved in an analysis of the problem of compression of 
a finite mass of plasma by a piston. Such a problem admits of a self-similar formulation 
for one-dimenslonal nonsteady equations of gasdynamics in the cases of plane, axial, and 
central symmetry. An analytical solution for the case of adiabatic compression is con- 
structed below. This solution is based on the use of the separation of the spatial (mass) 
and time variables in the initial problem for the equations of gasdynamlcs. With such an 
approach no waves of finite amplitude propagating through the mass, including shock waves, 
can appear. It was shown in [7] that for adiabatic compressio~ of a plasma the laws of time 
variation of the radius to the converging piston and of the pressure at it will be the fol- 
lowing: rp ~ t n, pp ~ t -n(N-i)-i . In a self-similar formulation for problems of compres- 
sion the time varies from t = -~ to t = 0 (the time t = 0 corresponds to the time of focus- 
ing of all the mass at the center) and the index n in this case of adiabatic compression 
equals n = 2/[2 + (N + i)(7 -- I)], where y is the adiabatic index (y = ep/C v) and N = 0, I, 
and 2 for the cases of plane, cylindrical, and spherical symmetry, respectively. The law of 
time variation of the total heat flux (W) or total laser flux q = qot 2n-s follows directly 
from dlmensionality considerations in this case. In the case of a plane piston (N = 0) the 
law for the pressure at it, obtained in [6] by the method of characteristic curves of the 
gasdynamic problem, coincides with that presented here. In the case of a spherical piston 
we obtain the laws indicated in [2], which are found in [3, 4] using dlmensionality rela- 

tions. 

For N = 2 and y = 5/3 the cited laws give r ~ t I/2, p ~ t -5/I, and q ~ t -i. In order 
to realize self-similar modes starting with t =--~, in a computer calculation of the corre- 
spondlng problem in partial derivatives, for example, the time of focusing t § t -- tf was 
shifted in [7-13]. In this case the self-similar mode begins at t = -~ and ends at the time 
of focusing t = tf (-~ < t < tf). The mode actually realized began at t = 0 (0 ~ t < if). 
With such an approach the laws of adiabatic compression presented above have the form 



r ~  ( t ]  - -  t ) l / ~ ,  p ~ ( t /  - -  t ) - 5 ;  ~, q ~ ( t ]  - -  0 - %  

Here  i n s t e a d  o f  p and q b e i n g  e q u a l  t o  z e r o  a t  t = - ~ o  f i n i t e  v a l u e s  o f  p ~ t f - 5 / 2  and 
q ~ t f  -2  a r e  " t u r n e d  on" w i t h  a j e r k  a t  t h e  i n i t i a l  t i m e ,  wh ich  g i v e s  r i s e  t o  a weak s h o c k  
wave c u m u l a t i n g  a t  t h e  c e n t e r  and a l t e r i n g  t h e  i n i t i a l  s t a t e  ( t h e  e n t r o p y ,  i n  p a r t i c u l a r )  o f  
t h e  p l a s m a .  One can  g e t  r i d  o f  t h e  i n i t i a l  s h o c k  wave i f  one a s s i g n s  a s e l f - s i m i l a r  mass  
distribution at the initial time, as shown in [5, 7], for example. The larger tf, the 
smaller the initial "jerk" and the closer the problem to being self-similar and the solution 
to the analytical solution presented below for the adiabatic case. In reality, the energy 
of the laser PUlse is finite. Consequently, the radiation flux is cut off at t = t: < tf. 
One can take different t~ and tf for one and the same energy of the laser pulse [for one and 
the same law q - (tf -- t)-2]. Numerical experiments show that an increase in tf, while it 
does weaken the initial shock wave, simultaneously decreases the limiting pressure and den- 
sity reached in the calculation. 

The thermal wave which compresses the plasma in numerical experiments of"laser squeez- 
ing" of a drop is replaced by a piston in the self-similar formulation. The connection of 
the problem of a piston with the problem of the "laser squeezing" of a plasma drop consists 
in making the assumption that the pressure in the thermal wave front must vary by the same 
optimal law as that at a real piston, in order to provide for the strong (almost adiabatic) 
compression of the part of the mass ahead of the front of the subsonic thermal wave. The 
results of numerical calculations confirm the possibility of such "supercompression." 

The possibility of constructing a solution in separable variables also in the case when 
dissipative processes are taken into account in a finite mass of plasma compressed by a pis~ 
ton is demonstrated below, and volumetric sources and sinks of energy (due to volumetric 
emission) characteristic of a fully ionized plasma are also modeled. In this case the com- 
pression is also accomplished by sound, shock waves do not develop in the medium, and all 
the effective fronts (regions of large gradients) of thermal or other waves do not move with 
respect to mass. The latter assertaion, although it seems paradoxical, follows directly 
from the possibility of separating the variables in the complex nonlinear system of equa- 
tions describing the motion of the fully ionized plasma. Proof of the possibility of "stop- 
ping" of the thermal front (with a null initial background) in the problem of heat propaga- 
tion in a medium with a coefficient of thermal conductivity which increases with temperature 
was first obtained in [14]. 

The physical meaning of solutions with a standing effective thermal front can be ex- 
plained.as follows. The effective depth of penetration (AXT) of heat through the mass in a 
time t is determined by the equation Ax T ~ ~M t, where ~M is the mass coefficient of thermal 
conductivity, which depends on the temperature, density, and radius~ (For example, in the 
case of a fully ionized plasma and spherical symmetry the heat flux described in mass La- 
grangian coordinates has the form W = -~oT sf2r~pdT/~x. In this case~ M =~oT 512~r~.) 

In the process of a self-similar mode of compression all the functions vary with time 
in such a way that the time dependence of ~M always has the form~M - i/t. Hence it follows 
that in these modes the effective depth of penetration of heat through the mass is constant 
and does not depend on time: Ax T - /(i/t)t = const. 

For problems of the self-similar compression of a finite mass of plasma the time varies 
in the range of -~ < t < 0. Thus, ~M grows (like the temperature and density) as t approaches 
the moment of focusing (t + 0). It is shown ~ [7-13] that such compressions (without shock 
waves) of a finite mass of fully ionized plasma by a piston are possible with laws analogous 
to those indicated above for adiabatic compresslon but now with an index n = 4/(4 + N). For 

the case of N = 2 we have n = 2/3, and the law of variation of the total laser flux will be 
q ~ t -=/3 (-~ < t < 0) or q (tf -- t)-5/3 (0 ~ t < tf). The law of growth q = q(t) in the 
case of the mode of compression by sound (without shock, thermal, or other waves of finite 
amplitude) of a finite mass of fully ionized plasma (S-mode) is somewhat slower (as t + tf) 
than the law for adiabatic compression (N-mode). The N-mode is usually used in numerical 
experiments on the squeezing of a drop by laser radiation. Because of this the thermal wave 
moves through the mass in the N-mode. As noted in [2], with the motion of the thermal wave 
through the mass the symmetry and stability of the plasma compression by its front are con- 
siderably improved in comparison wfth the compression accomplished by a piston. 

From this it is seen that the range of variation of the exponent g in the law q = qot g 
in the transition from the N-mode to the limiting S-mode is not wide: --2 i g ~ --5/3 (in the 
case of N = 2 and y = 5/3). 



Two analytical solutions are given in the present report: one for the problem of the 
adiabatic compression of a finite mass of plasma by a piston and the other for compression 
of a fully ionized plasma by a piston moving with a constant velocity. 

They make it possible to analyze the characteristic features of the modes and their 
dependence on a number of parameters of the problem. The analytical solutions are conve- 
nient for demonstrating the principle of the transition from problems of the dispersion of 
a finite mass of plasma to problems of its compression. The principle itself was first 
formulated in [8] and has been widely used for the study of different modes of compression 
in [7-13]. 

The analysis of self-similar solutions with separable variables in the problems of the 
compression of a fully ionized plasma makes it possible to clarify another interesting prop- 
erty of these solutions. In the present report (see also [7, 9-13]) examples are cited and 
the conditions are clarified for the case when the profiles of the quantities in the plasma 
being compressed are spatially nonmonotonic in the process of the monotonic compression of 
the plasma by a piston with monotonic thermal conditions at it. For example~ several tem- 
perature maxima exist. The appearance of such solutions (we will call them solutions with 
structures) is due to a superheating instability in a number of cases [15, 16]. The struc- 
tures represent the developed nonlinear stage of such instabilities. The conditions for 
the appearance of such structures in self-similar modes of compression of a finite mass of 
plasma due to viscous dissipation, owing to the temperature dependence of the coefficient of 
ionic viscosity, are analyzed in [7, ii]. Their formation can also be due to the presence 
in the plasma of volumetric sources and sinks of heat which depend on the temperature and 
density (due to volumetric emission from the plasma, for example). Viscous structures were 
discovered in numerical experiments in [17]. 

Structures due to volumetric emission were studied in the steady-state Z-pinch problem 
in [18]. In a number of cases the appearance of structures in the plasma can adversely af- 
fect the modes of its compression by laser radiation. Their appearance must lead to an 
increase in entropy in the medium and hinder its compression. To some extent this process 
is analogous in its consequences to the process of heating of the compressed central parts 
of the plasma by fast electrons generated in the region of absorption of the laser radiation 
in the corona. The latter process has been studied intensively by a number of investigators 
and, as indicated in [2, 19], can have an essential effect on the compression and burning 
of the drop in certain cases. The explanation of the role of superheated structures in the 
process of compression and burning of a drop requires the conducting of the appropriate 
numerical experiments. 

On the other hand, the formation of structures can signify the possibility of heating 
individual sections of the plasma to temperatures markedly exceeding the average, and of 
initiating a thermonuclear reaction under conditions when the average temperatures are in- 
sufficient for its occurrence. 

Structures also develop in the presence of a magnetic field in the plasma. They can 
be produced by a superheating instability on Joule heat: These are the so-called current 
layers, which have been studied in numerical and physical experiments [20-33]. But there 
are also a number of other specific magnetic structures which are responsible for the break- 
up of theplasma into regions with direct and reverse currents and the formation of layers 
of magnetization in the plasma. Singular structures develop in certain cases in a plasma in 
regions where there are zero values of the magnetic field strength. In [20-22, 24~ in the 
self-similar problem of the dispersion of a finite mass of plasma examples of current layers 
were constructed and their properties were studied. Examples of the magnetic structures 
indicated above were constructed in [9-13] and a number of their properties were determined 
in the self-similar problem of the compression of a finite mass of plasma by a piston under 
the conditions when there is a magnetic field in the plasma. It was also possible to con- 
struct self-similar modes with separable variables for the compression stage in classical 
problems of Z- andS-pinches. Analytical solutions have been obtained in a number of cases. 
The construction of such modes means that one can also indicate the laws of variation of the 
hydrodynamic, thermal, and magnetic quantities at the piston such that the compression of a 
fully.ionized plasma will take place without the propagation of any waves of finite ampli- 
tude (shock, thermal, magnetic) through the mass, i.e., in the S-mode, for the case when 
there is a magnetic field in the plasma. Such a mode of compression was first proposed in 
[8], where it was shown that compression of the plasma in a Q-pinch by sound (without shock 



or othe~ waves) is accomplished in the case of a fully ionized plasma when the magnetic 
field varies according to the law H ~ (i/t)( --~ < t < 0) or H ~ i/(tf -- t) for 0 E t < tf. 

In [9] it was shown that in a Z-pinch it is required that the profile of the rise of 

the total current with time follow the law I = Iot-~/s (-~ < t < 0) or I = Io(tf -- t) -x/5 
(0 E t < tf). In this case the compression of the column of fully ionized plasma also takes 

place without the propagation of shock, thermal, or magnetic waves of finite amplitude 
through it, although in the plasma one takes into account the exchange between the ion and 
electron temperature, the electronic and ionic heat conduction, the finite conductivity, the 
ionic viscosity, and volumetric sinks modeling the volumetric emission. 

The adiabatic mode of plasma compression in Z- and @-pinches was analyzed in [34], 
where the modes of the rise in the current l(t) and the external field H(t) were found nu- 
merically in the form of solutions of the ha type. The presence of a magnetic field in the 
plasma was modeled by the value y = 2 in the purely gasdynamic problem. The solutions found 
approach h~(t) as t § tf, as in the case of the compression of a ball. The limiting case of 
adiabatic compression (solutions of the h: type) in pinches was examined analytically in [9]. 

Thus, the self-similar modes of compression of a finite mass of plasma by a piston (or 
modes with separable variables) constructed in [7-13] allow one to obtain and study from a 
unified point of view the modes of plasma compression by small sonic disturbances both in 
the case of its adiabatic compression (N-mode) and with allowance for the complicated sum 
of the dissipative processes in a fully ionized plasma (S-mode). 

On the other hand, the possibility of using the indicated class of self-similar solu- 
tions to analyze the developed nonlinear stage of superheated instabilities and some other 
instabilities in a plasma proves to be no less interesting. The distinctive physics of a 
plasma containing structures arises at this stage. 

i. Statement of the Self-similar Problem 

We will seek in separable variables (the time variable and the Lagrangian mass coordi- 
nate) the solution of the problem of the compression of a finite mass of plasma [2~N + (1/2) ~ 
(2 -- N)(I -- N)]Mo by a piston, described by a one-dimensional nonsteady system of gasdynamic 
equations with allowance for the electronic and ionic thermal conductivities (~e, '~i), the 
first and second ionic viscosities (~, ~), and the exchange of energy between the ion and 
electron components [Q = ~(T i -- Te)] and between volumetric heat sources and volumetric 
emission [7]. The following boundary conditions are assigned: At the center the velocity 
v = 0 and the heat flux Wi, e = 0, at the piston the velocity v = vot n-1 and the heat flux 
Wi, e = Mov~i,e(S,)t 2n-3 or the pressure p = pot -nl and q = qot 2n-3, where q = Wi +We and 
n~ = n(N -- i) -- 2. The dissipation coefficients have a power-law form: Re = a:Tem~pkx; ~i = 
a2Tim~0k2; q = asTim30k3; ~ = a4Tem~pks; ~ = asTimspk4; The plasma is assumed to be ideal: 
The pressure is p = Pi + Pe = 0R(Ti + ZTe) and the internal energy s = p/p(y -- !), where R 
is the gas constant. 

The volumetric heat sources are 

a6T~'p k6 aTT~p h7 

Qi : t + asT~'p h'; Qe -- l + agT~,p h~" 

The sink due to volumetric emission is 

Q E = aloTem'OP k'~ 

The self-similar variable is s = x/Mo and the condition of self-similarity is n = Li/Ki = 
(Lj -- g)/Kj = (L k + I)/(K k + i -- N), i = I, 2, .... 5, j = 6, 7, i0, k = 8, 9; L i = 2mi -- i, 
i = i, 2 .... , i0; K i = 2m i -- ki(N + i) + N -- i, i = i, 2, ..., i0. 

Self-similar modes with a parameter of finite mass (regular mode) were analyzed earlier 
in [35-37]. The introduction of negative time for the analysis of adiabatic problems of 
compression was proposed for the classical problem of the cumulation of a shock wave [38, 
39]. 

2. Analytical Solution for Adiabatic Compression of a Plasma by a Piston 

In the case of an adiabatic process (p = ~oOY) the problem has an analytical solution. 
The exponent in the law of motion of the piston with time [rp = (vo/n)t n] in an adiabatic 

5 



mode with separable variables (N-mode) is n = n, = 2/[2 + (N + 1)(y -- l)]. The time depen- 
dence of the quantities in the N-mode is as follows: For the temperature T = r~t-aR-X| 
for the velocity v = r~t-1~(s), for the pressure p -- r,(x-N)t, aMo$(s), for the density p = 
r,-(N+1)Me~(s). Here r~ = vot n*. The dimensionless quantities | a(s), B(s), and ~(s) 
depend on the dimensionless mass coordinate s -- x/Mo, which is connected with the dimension- 

less spatial coordinate X = r/vot n by the condition s = ~L ~. Converting from s to X, the 
0 

analytical solution of the self-similar system of ordinary differential equations can be 
written in the form 

O (Z) = %8 v~ (~); = = n,~; ~ (~) = %8v (~); 

~(N + II (V-- il ~ (G + ~=)Iv-~ 

where ao=~ov~2/n*M~ -I . The constant Cx is determined from the condition 
t/n~ 

f, 6~Nd~ = 1 . The 
0 

requirement that C, ~ 0 results from the condition | > 0 in the interval 0 < I < l]n,, which 
imposes a restriction on the quantity ~o: ao ~ o~(N, y). Therefore the N-mode occurs with 
an additional condition on the constant in the law of time variation of the piston velocity: 

V2oln,t <.~ ~.0 0 
:o (N, 'p) 

3. Analytical Solution of the Problem of Rarefaction or Compression of a Heat-Conducting 
Gas in the Case of Uniform Piston Motion 

aTmpN/(N + i) Let the coefficient of thermal conductivity be ~ = , and then n = i in 
the law of piston motion rp = (vo/n)t n. The solution has the following form: 

temperature 

T (r,  t) ---- v2 v~ - f f  0 (r/vot) -~ --~ 0 (~), 

density 

pressure 

p (r, t) = Mo~o 
O, ot)aS+* ~r ho~5 

. p(r ,  t) = Mo(vot)l-nt-2go.  

Conditions at the canter: 

v(O, t)= O; • t)= O; 

at the piston: 

v(rp, t) = Vo < O; T(rp, t ) =  ( @ R ) 6 ,  

The integration constants 8o and Cx are determined from the conditions 

�9 i 

in the cases of plane, cylindrical, and spherical symmetry. Compression corresponds to times 
of -4*'< t < 0 and expansion to times of 0 < t < m. 

For the compression mode (-~ < t < O, A < 0) the entropy decreases with time, the dimen- 
slonal heat flux is directed outward and increases in magnitude with time, and the temperature 
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profile decreases from the center to the edge. In the rarefaction mode (0 < t < ~, A > 0) 
the temperature profile increases up to the piston, the entropy of the mass increases, and 
the dimensional heat flux is directed into the compressed mass and decreases in magnitude 
with time. The exact solution with the values of the parameters m = k = 2/3, A = --1/2, N = 
2, and | = i (Sp = 0.25) was used to verify the existence of a self-similar solution. The 
problem of the emergence into a self-similar mode of a system of equations with non-self- 
similar initial data was solved numerically for this case. The result for the temperature 
T(r, t) is presented in Fig. i. The emergence of the solution into an analytical solution 
(denoted by an arrow) as t § tf is seen. In this example tf = i. 

4. Thermal Structures 

The time dependence of the entropy is 

i --? "~ ~--~o~ ? e x p ( S / c v )  ~ ~_~ = p 9  - v  = 3Io  ( vo t e ) -  ~ " p o -  . 

A necessary condition for the appearance of nonmonotony in the temperature profile is 
the increase in entropy with time and the presence of heat sources (or the decrease in 
entropy with time and the presence of heat sinks, such as volumetric emission). The require- 
ment of an increase in entropy in the case of compression problems (--~ < t < 0) leads to the 
condition of compression with large accelerations: n < n, E 2/[2 + (N + l)(y -- i)]. From 
this it follows that in self-similar problems of the compression of a fully ionized plasma 
the appearance of structures is possible only when y < y* ~ i + N/2(N + i). Small values 
of y can be treated as an effective means of allowing for contamination of the plasma by 
heavy impurities. Structures connected with the presence of volumetric emission from the 
plasma, conversely, appear in the problem of compression with n > n,. For problems of dis- 
persion of the plasma in the S-mode (0 < t < =) the signs of the inequalities in the condi- 
tions cited above are reversed. 

An analysis of analytical solutions and numerical calculations of self-similar problems 
shows that an additional condition for the existence of temperature inhomogeneities in the 
S-mode is the requirement that the characteristic mass depth Ax T of the thermal skin (it 
does not depend on t~e in the S-mode) be less than that of the mass being compressed. The 

number of temperature maxima is inversely proportional to the quantity K T = AxT/Mo = /i~]~12N, 
where~ is the dimensionless coefficient of thermal conductivity. In the case of n = 4/(4 + 
N) we have ~ = A~| 5/2, AI = alv~+N/MoR 7/2. An analysis of numerical calculations gives a 
more accurate estimate of the skin depth: 

,~7. _--- 5 V 2 ~ - -  11 ~" 

The expression for the coefficient of thermal conductivity is 

M o R ~  __ M o R  A6) .~6~ ,  
• = a T m p h  - -  (votn)N_:t ( vo t~)N- -~ t  

A = ~v~m+N-x-k(N+l)M~-IR -(m+~) If the dimensionless temperature | and density ~ in the 
expression for ~ are averaged over the interval 11 < % < %=, then the number of temperature 
maxima in this interval is 
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5. Some Numerical Solutions of the System of Dimensionless Equations 

For a fully ionized plasma a self-slmilar solution with separable variables is possible 
when n = 4/(4 + N). In the case of N = 2 we obtain n = 2/3. In this case the time depen- 
dences of the quantities have the following form: v ~ t-I/3, p ~ t -2, Ti, e ~ t -2/3, Wi,e ~ 
t -51s, and r ~ t 2/" --= , where < t < 0. The results of numerical integration for different 
values of Y Pand of the dimensionless dissipation coefficients are given in Figs. 2-7, where 
the dimensionless quantities are shown as functions of the dimensionless Eulerian coordinate 
I = r/vot n. Figure 2 illustrates the compression of a one-temperature viscous and heat-con- 
ducting medium for the case of y = 1.2. In this case n, = (10/13) > n and the compression 
takes place with an increase in entropy. The coefficient of thermal conductivity is ~ = i0. 

7 1 2  s / 2  
vo- MoR T and the coefficient of second viscosity is ~ = 5vo-~MoR~l=T ~/=. For the given 

xp 

/ calculation the dimensionless mass being compressed is Sp= 6~d~ = 0.17. The maxima of the 
0 

temperature | are formed because of the superheating instability due to viscous dissipation 
of energy. The source of the heat dissipated by viscosity ('~iscous" heating) is maximal 
in regions of a maximum in O. The density ~ is minimal in these regions. The result of the 
numerical solution of the system of self-similar equations for the case of compression of a 
one-temperature heat-conducting medium with allowance for volumetric emission is presented 
in Fig. 3. Here y = 5/3, i.e., n, = 1/2 < n, and the compression takes place in the mode of 
a decrease in entropy. The coefficient of thermal conductivity is M = 0.0001vo-'MoRT/=T s/=, 
while the term modeling the volumetric emission is QE = l'5v~Mo-=/3RT/=T~/=PS/S 

The minima of the temperature | are caused here by volumetric emission: The heat sink 
due to emission from the system is maximal in these regions. The pressure 8 increases mono- 
tonically with X, as follows from the momentum equation. Therefore the density ~ is maximal 
in regions of a minimum of | 

Figure 4 illustrates the possibility of the formation of a temperature maximum due to 
volumetric energy release. In the calculation y = 1.2, the coefficient of thermal conduc- 
tivity is ~ = 0.274vo-6MoRT/=T =/=, and viscosity is not taken into account. The term Qi = 
aTil'6P~'3 satisfies the condition n = 2/3 for the self-similar compression of a fully ion- 
ized plasma. In the calculation presented Qi = vo-~ -~ SRl ~'601"s "6T i . In the given 
example the maximum of the temperature| is caused by a superheating instability due to the 
source qi = | 6~,.s The possibility in principle of the formation of a superheating 
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instability in a medium with viscosity or a volumetric source was pointed out in [15, 16]. 
The examples illustrated by Figs. 2 and 4 confirm this possibility. 

The results of a numerical solution of the problem of the compression of a two-tempera- 
ture plasma with allowance for volumetric energy release are presented in Fig. 5. Here 

- - 6  7 / 2  5 / 2  
y = 1.2, the coefficients of thermal conductivity are w e = 10vo MoR T e and ~i = 0.274. 

_ 6  7 1 2  5 1 2  . . vo MoR T i , the coefflclent to the volumetrlc term is ~ = 0.944v~MToZR-:IiT-312Pi, the 
term modeling the volumetric energy release is Qi = 3v~~176 ~, and the multi- 
plicity of ionization is z = i. In the solution the maximum of energy release does not lie 
at the center. This mode models the compression of the central section of the plasma (from 
the center to the front of the thermal wave). The heat from the thermal wave travels into 
the central region by electronic heat conduction. The density peak at the piston models the 
density peak traveling ahead of the thermal wave. Separation of the temperature is observed 
in the central region. 

6. The S-Mode in the Presence of a Magnetic Field (Separation of Mass and Time Variables in 
the Magnetohydrodynamic Equations) 

When a magnetic field is present in the plasma the equation of diffusion of the magnetic 
field is added to the system of equations (sec. i), the Lorentzian force is introduced into 
the momentum equation, and Joule heating is introduced into the energy equation. The coef- 
ficient of electronic thermal conductivity begins to depend on the magnetic field: 

: a lTO,ok ,  ( 1 + a11T~ .p~ , (V  Hr 2 ~,--i. Xe 

H e r e  t h e  c a s e s  o f  N = 0 a n d  1 a r e  a n a l y z e d ,  w i t h  t h e  p r o b l e m  b e i n g  c o n s i d e r e d  a s  c y l i n d r i -  
c a l l y  symmetrical in the latter case. The coefficient of magnetic viscosity is 

= + + 

The quantities m i and k i introduced satisfy the condition of self-similarity: 

t't = 
2roll ~- bt 2 rn12-  I 2rn~, + b2 

2rn~l - -  kl~ (.V ~- t) ~- (1 - -  A') b--jL - -  2rnl2 - -  k12 (N -}- t) - -  2 2 2m~3 - -  k13 (X ~- t) ] -  (1 - -  N) -~-  

The time dependence of the magnetic fields is 

i--N 

Hz,(v (x, t) = M~/2 (Vot~) 2 t-lh.~,~(s) 
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and the total current in the Z-pinch is 

I = [ot'-1+(t-N)n/2 

The conditions for the formation of '~agnetic structures" are analogous to those cited 
in Sec. 4. Thus, the condition of a decrease in the magnetic flux F z ~ /HzrNdr with time 
will be a necessary condition for the nonmonotony of the axial magnetic field (hz). For the 
problem of compression (-~ < t < O) this requirement leads to the condition n > n| E 2/(3 + 
N), which is always satisfied in the case of the S-mode for a fully ionized plasma [n = 4/ 
(4 + N)]. In particular cases one is able to construct an analytical solution with an oscil- 
lating field. 

The characteristic mass depth AxMof the magnetic skin is determined similarly to Ax T. 
Cases when AXM~ AXT are possible. The number of maxima of the magnetic field is inversely 
proportional to the quantity 

Profiles of the dimensionless temperature | = RTt2/(vata/5) a, the dimensionless density 6 = 
0 (vot~/s)2/Mo, and the dimensionless axial magnetic field hz = Hzt//Mo along the dimension- 
less spatial coordinate X = r/(vot ~/s) in the problem of the compression by a piston (the 
coordinate of the piston is %p ~ 0.4) of a finite mass of ~lasma (a O-pinch with a laser) r 

S2 are shown in Fig. 6. The electronic thermal conductivity M = --0.0001| / and the finite 
conductivity ~m = -O.001@ -'/2 in the plasma are taken into account, 7 = 1.2, N = i, n = 4/5. 
(n < n,), and the dimenslonless dissipation coefficient are negative, slnce-~ < t < 0. The 
dimensional coefficients of thermal conductivity and conductivity are positive and X = 0 is 
the axis of sy~netry. A strong density peak, located near the first minimum of the magnetic 
field (the o-layer) is observed in the region X E (0.02-0.18). It is mottled by a series of 
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temperature maxima and density minima -- a series of current layers. The magnetic field dif- 
ferentials in the current layers are in the third decimal place and are not noticeable in 
the graph. Taking real values of R e and ~m for a fully ionized hydrogen plasma we find, 
using the equations of a dimensional analysis (see Sec. 5, for example), that for the given 
calculation the mass compressed is Mp = 0.074 g/cm. At t = --i0 -~ sec the radius of the pinch 
is r n = 70 cm and the average density is n = 1018 cm -3. At t = --10 -5 sec, rp = i0 cm, n = 
102~ -3, and the piston velocity is Vp = i0 km/sec. The magnetic field at the maximum is 

Hma x = 6.7/t Oe; at the time t = --i0 -~ sec, Hma x = 70 k0e. 

Let us present one more example of nonmonotonic behavior of the magnetic field. Pro- 
files in dimensionless form of the axial magnetic field h z = Hzt/~o, the plasma temperature 
| = Rt2T/(vot~/5) 2, and the density ~ = [(vot~/5)2/Mo]0 along the dimensionless spatial co- 
ordinate % = r/vot 4/5 are presented in Fig. 7. The axis of symmetry corresponds to the value 
% = 0; % = i corresponds to the piston compressing the plasma. The electronic thermal con- 
ductivity and the finite conductivity are taken into account: ~ = --185.5| S/=, ~ = --0.00032. 
9-3/2 Since the dimensionless temperature | varies slowly along %, one can obtain an 
analytical solution for h(X): h = h(0)Jo(%#(l -- 2n)/Om), where Jo is a Bessel function and 
n = 4/5 (for a fully ionized plasma). The ideal equation of state with y = 5/3 was used: 

v m  = ~ t / ( v o t 4 / 5 ) 2  ~ const .  

From the form of the solution it follows that a nonmonotonic magnetic field profile can 
develop in the case of a large enough plasma conductivity (~m is small) and with the condi- 
tion that the compression of the plasma takes place without very large acceleration or de- 
celeration (n > 1/2). These two indications coincide with the conditions for the formation 
of reverse currents in pinch experiments. The real parameters of the given calculation are 
the following: Mp = 2"10 -7 g/cm, at the time t = --i0 -~ sec rp = 250 cm and Vp = 20 km/sec; 
at the time t = --10 -5 sec, rp = 40 cm, Vp = 30 km/sec, and n = i0 I~ cm -3. The field at the 

center at t = --i0 -~ sec is Hmax = i Oe. 

In summing up the research in [7-13] let us dwell on some unique properties of S-modes 
of compression of a finite mass of plasma. 

With fixed properties of the medium the S-modes represent the boundary between faster 
modes of increase in the quantities at the boundary, resulting in the ordinary increase with 
time in the depth of penetration into the plasma of thermal, magnetic, and shock waves ("in- 
creasing skin") and the slower boundary modes in which the effective penetration of the 
waves into the medium contracts ("contracting skin"). In the S-mode the mass skin depth 
does not depend on time [40]. In an established S-mode the medium reacts to the effect of 
the boundary mode as a single unit. 

Unique conditions can be attained in S-modes with real physical parameters of the 
medium: spatial constancy of the pressure when the velocity of sound is finite (the case of 
n = i); spatial constancy of the temperature when the coefficient of thermal conductivity is 
finite (in [7] the case of compression of a heat-conducting medium with the condition n = n, 
of constancy of entropy); heating of the medium which does not produce its hydrodynamic mo- 
tion (the case of n = 0 in [7]). 

II 



In S-modes the principle of local action occurs (no wave of finite amplitude), owing to 
which the S-modes possess a distinctive inertia, despite the presence of a number of dissipa- 
tive processes in the medium. This makes it possible to keep the S-modes active through 
inertia in the central parts of the plasma for a certain time even after the departure of 
the boundary modes which produced them. 

7. Modes with Peaking for the Equation of Heat Conduction with a Source 

It is interesting to find out what results from the effect on the plasma of boundary 
modes with peaking, when the exponent n does not coincidewith that obtained from the condi- 
tions of self-similarity for the S-mode. In order to discover the most important aspects 
of the phenomenon we will discard the complicated system of gasdynamic equations and con- 
sider one quasillnear equation of heat conduction in which the coefficient of thermal con- 
ductivityis a power-law function of the temperature. 

The phenomenon of the metastable localization of heat in a medium with nonlinear heat 
conduction was studied in [10-13, 40, 41]. The study was conducted on the basis of an analy- 
sis of the simplest problems for equations of nonlinear heat conduction ina stationary 
medium. One of the directions of the investigations consisted in the study of the penetra- 
tion of thermal waves into a cold half-space (the coefficient of thermal conductivity is re- 
duced to zero in the background). This process was studied earlier in [42-48] for boundary 
modes not displaying the property of peaking. In these reports the conditions for the exis- 
tence of a finite front of the thermal wave were determined and a number of properties of 
nonlinear heat conduction in a compressible medium were studied. In [10-13, 40, 41] the 
temperature at the boundary increased in a mode with peaking, which models the action of 
laser radiation on the medium. 

An S-mode was constructed (separation of the independent variables) leading to the 
penetration of the thermal wave to a finite depth and then its stopping. Although energy 
continues to travel into the medium and the temperature in the zone of localization grows 
without limit, propagation of heat into the cold medium does not occur. The reason is the 
"concave" nature of the temperature profile produced by the indicated boundary mode (a more 
exact definition of when the velocity of the thermal wave is reduced to zero and when it is 
different from zero is given in [14]). 

A self-similar solution in which the half-width of the region of heating contracted 
with time (LS-mode) was constructed in the case when the temperature at the boundary in- 
creased in a mode with peaking but it increased slower (as t § tf) than in the S-mode. 

Profiles of the temperature T over space r at different times are presented in Fig. 8. 
The half-width, which contracts with time after the mode is established, is marked with 
crosses. 

The successive equal portions of heat, entering in ever shorter time intervals, are 
localized near the heating boundary. 

A number of interesting theorems were formulated and proven in [40]. It was shown that 
localization of the heat is characteristic of a certain class of boundary modes (S- and LS- 
modes) which operate with peaking. It was possible to prove the metastable localization of 
heat for the Cauchy problem and to extend these results to multidimensional problems. Esti- 
mates which were made show that the localization of heat promotes the obtainment of superhigh 
temperatures with comparatively small laser radiation energies: T ~ 10 key in a medium of 
D + T with n = 102~ cm -3 with an energy of several hundred joules when the total time of the 
laser pulse is 10-" sec and the depth of localization is r Z = 0.1 cm. It is required that 
the laser flux, which increases in the peaking mode, reach a limiting value of qM a 1016 W/ 
cm 2 at the final time. The confinement time at this temperature comprises several tens of 
picoseconds [(20-30)'10 -*2 sec]. The Lawson criterion is not satisfied in this case, since 
mainly electrons are heated and the confinement times are small. A number of other physical 
factors (hydrodynamics, burnout, etc.) can be neglected in accordance with the analogous 

estimates of [i]. 

It is important that one can obtain supertemperatures (a hundred million degrees) with 

meager energy expenditures. 

The structures which develop in a plasma when modes with peaking act at its boundaries 
owe their origin to the presence of volumetric sources or sinks in the medium (Sees. 4-7). 
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In addition, under certain conditions nonlinear volumetric heat sources can by themselves 
lead to the formation of modes with peaking in the medium and, consequently, to the local- 
ization of heat and the formation of structures. Such effects have been observed, for ex- 
ample, in work on the study of the current-layer effect [21, 22, 26, 31]. The Cauchy prob- 
lem for a quasilinear equation of heat conduction with nonlinear volumetric heat sources 
was studied in [49] for an understanding of this phenomenon and the determination of its 
properties. 

Three modes of burning of a medium described by such an equation are presented in Figs. 
9-11. The nature of the temperature dependence of the coefficient of thermal conductivity 

~ T m and of the volumetric energy release Qi ~ T 1 determines a mode with an increasing 
half-width of the burning region for 1 < m + i (HS-mode) (Fig. 9), with a constant half- 
width for 1 = m + l (S-mode) (Fig. I0), and with a contracting half-width for l > m + i (LS- 
mode) (Fig. Ii). The time shift t + t -- tf described above was used everywhere in the solu- 
tions and their numerical illustrations analyzed here and below. The initial data were as- 
signed at the time t = 0 while the moment the temperature goes to infinity (the moment of 
focusing) corresponds to the time t = tf. In all three cases the burning was induced by 
the introduction of a finite temperature disturbance into a section of initially cold medium. 
Burning localized by nonlinear processes to a certain limited region of the medium develops 
in the cases of S- and LS-modes. The nonlinear sources cause the formation of a certain 
"concave" temperature profile on a characteristic spatial scale called the fundamental length 
LT ~ ~Qi [49]. The region of burning induced by the initial temperature disturbance in- 
troduced into the cold medium spreads out in the beginning to the size of the fundamental 
length. At this size a sharp acceleration of the process takes place (by four to five orders 
of magnitude in time) and a distinctive burst of energy release develops Cthe analog of a 
chain reaction, but only for the case of a nonlinear medium). The growing energy release 
forms a "concave" temperature profile which does not propagate beyond the limits of the 
fundamental length for a certain finite time [41, 49]. The developed asymptotic stage of 
these events is described with the help of self-similar solutions for modes with peaking. 
A periodic analytical solution was constructed in [49] showing that burning in the S-mode 
can lead to the breakup of the medium into periodic thermal structures which grow in ac- 
cordance with a definite law. This solution indicates the formation of a distinctive ther- 
mal self-insulation of the separate sections of the medium from each other in the process 
of burning with peaking. 

The result of a calculation showing the independent burning of thermal structures in 
neighboring fundamental lengths is presented in Fig. 12. Allowance for a number of physical 
factors (burnout, variation of reaction rate with temperature, etc.) does not destroy the 
localization phenomenon itself but only limits the time of growth of the thermal structure, 
accompanied by contraction of its half-width. The burning stage with the spreading of heat 
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sets in later. The phenomenon of the localization of heat in a medium with nonlinear heat 
conduction has been connected earlier with the action of volumetric heat sinks in the medium 
[50, 51]. The sinks develop, for example, through cooling of the medium during its expan- 
sion or through volumetric emission from the plasma. In a medium with sinks structures can 
also exist under steady conditions [52, 53]. 

The combustion of a medium uniformly heated at the initial time was also analyzed in 
[41, 49]. It was shown that it is unstable against small disturbances for the S- and LS- 
modes. The developed nonlinear stage of this instability in the case of the S-mode is 
described by the same self-simllar solution as for a finite disturbance of amplitude. 

The mechanical analogy of this mode with the dynamics of a point in a potential force 
field makes it possible to find the spectrum of lengths of structures developing in the 
medium. It is shown that in the developed asymptotic stage this spectrum always degenerates 
into one fundamental length, i.e., the burning of the medium in a structure for I = m + i 
(S-mode) always takes place at a fundamental length LT. This is illustrated by Fig. 13. 
The width of the temperature peak which develops corresponds to the fundamental length of 
the S-mode. It is possible that the different manifestations of the effect of localization 
of heat (thermal inertia) open up entirely new approaches to the obtainment of CTS (control- 
led thermonuclear synthesis). In fact, the main problem in CTS -- the obtainment and confine- 
ment of superhigh temperatures -- turns out to be deeply connected with the creation of modes 
with peaking in the medium, the formation of thermal structures, properties of the quasi- 
linear transfer equations, and the effect of nonlinear sources. 

It is noteworthy that nonlinear processes in a continuous medium thermselves create 
modes with peaking. In this case it is not necessary that the rise of the boundary modes 
assigned from without take place with peaking. The study of the current-layer effect [20- 
33] and of the problem of burning in a medium with nonlinear volumetric sources [41, 49] 
and calculations and self-similar solutions for systems of nonlinear equations [7, 9] show 
that modes with peaking can be created in a medium owing to nonlinear relationships in the 
systems of equations. In fact, the thermal self-insulation of the structures in LS- and S- 
modes leads to the independence of the burning of the structures in the medium from the ac- 
tion of the boundary mode (if it varies slower with time than the mode produced by the 
sources). 

The problems discussed show that deep internal relationships exist between the nonlinear 
processes in a medium, its breakup into separate structures, and the distinctive thermody- 
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namics of the modes of peaking which are accompanied by complication of the organization of 
the medium and the appearance of singular physics of a plasma with structures [7, 9-11, 27]. 
The transfer processes in such a medium, the conditions of initiation of the thermonuclear 
reaction, the stability, and a number of other properties are altered cardinally. The pros- 
pect arises of using fine nonlinear effects to obtain new approaches to the solution of the 
CTS problem. These phenomena also ha~e great theoretical importance apart from the possi- 
bility of their use in the CTS problem. 

The results of the analysis of modes with peaking made it possible to formulate several 
new principles characterizing the properties of strongly nonsteady processes [41]. 

i. In the presence of a certain temperature dependence of the coefficients of thermal 
conductivity of the medium nonlinear heat sources provide for variation of the quantities in 
the medium in a peaking mode. The metastable localization of heat at definite spatial 
scales, called the fundamental length [49], occurs for S- and LS-modes of peaking. This 
provides for the development of thermal structures in the medium at the fundamental lengths. 
In a compressible medium the fundamental mass plays the role of the fundamental length [ii, 
12]. 

2. Structures can coexist if they have the same time of focusing. It is determined by 
the form of the initial disturbance, particularly by its maximum amplitude. Different 
initial data leading to the formation of structures with correspondingly different focusing 
times (and different initial amplitudes Tmi) can coexist as a single formation, now with a 
new focusing time, if there exists a self-similar solution combining t~is entire set of 
initial data. Such a combination is allowed only for a certain discrete set of fundamental 
masses and amplitudes Tmi of the structures~ Thus, a process of complication of the orga- 
nization of the medium (the combining of structures into a new single organization takes 
place) and the principle of superposition of nonlinear systems can be accomplished. 

3. Allowance for a number of processes acting simultaneously in the plasma leads to 
an increase in the number of types of structures and to an enormous variety of self-similar 
modes with nonmonotonic spatial distributions of the quantities, making it possible to estab- 
lish the conditions for the combining of the most varied structures (see [7, 9-11, 27, 54], 
for example). Consequently, in the strongly nonsteady thermodynamics of modes with peaking 
there appears the inherent possibility of formulating the concept of the existence of a 
discrete set of fundamental masses of structures which can be combined into a new organiza- 
tion. 
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It was shown in [7-13] that the interaction of the structures entering into the self- 
similar solutions of the problem of the compression of a finite mass of medium (S-mode) is 
accomplished through small sonic disturbances. 

4. In LS-modes structures moving together with waves can appear within the fundamental 
length and the contraction of the half-width of the structures with time occurs [41, 49]. 
For LS-modes there is an analog of the uncertainty principle connecting the region of 
localization of the structures with the magnitude of the external action [41, 49]. In the 
S-mode the localization depends only on the properties of the medium and the structures 
develop while retaining a constant half-width. 
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ADIABATIC COMPRESSION OF A GAS BY MEANS OF A SPHERICAL DRIVER 

Ya. M. Kazhdan UDC 533.21 

w A spherical driver* with an initial radius ro within which there is a gas at rest 
(~ is the polytropic index; co is the velocity of sound) starts to converge toward the center 
at a certain time. The problem is the determination of that driver trajectory for which all 
8 characteristic curves emerging from it converge at the center of the time of collapse of 
the driver, which is taken to be the origin of the time scale, t ffi O, in the following. In 
this case the motion of the gas within the driver will be spherically symmetric, isentropic, 
and self-similar. We take ~ = cot/r as the self-similar variable, and the gasdynamical func- 
tions are represented in the form 

u = r / t u l ( ~ ) ;  c = r / t c i ( ~ ) .  

In the r--t plane, the flow will be separated from the region at rest by the character- 
istic curve r = --cot (n = --i). The functions u, (~) and c~ (~) are defined by the equation 

*A s o l u t i o n  i s  g i v e n  i n  [1] f o r  t h e  c a s e  o f  a p l a n e  d r i v e r .  A s e l f - s i m i l a r  s p h e r i c a l l y  sym- 
m e t r i c  c o m p r e s s i o n  wave was a l s o  c o n s i d e r e d  by I .  E. Zababakhin  and V. A. Simonenko.  ( P r i -  
v a t e  communication -- Ya. K.). 
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